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Some mathematical problems in the theory of the 
stability of parallel flows 
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Department of Mathematics, Massachusetts Institute of Technology 
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By applying the method of initial values to the theory of stability of shear flows, 
Case has recently found certain results which are in apparent conflict with those 
obtained by the theory of normal modes. It is shown how these differences may 
be reconciled. Some new features in the theory of normal modes are also brought 
out. The relative merits of the two theories are compared. 

1. Introduction 
The usual theory of hydrodynamical stability is based on a study of the normal 

modes. There has been frequent controversy over this theory, because the 
behaviour of these normal modes are indeed very complicated at very large 
Reynolds numbers. For example, this writer (Lin 1955) has shown, from purely 
mathematical analysis, that ' . . .there are certain damped solutions in a viscous 
fluid which, in the limit of vanishing viscosity, do not reduce to solutions of the 
inviscid equation throughout the whole region of the flow.' To those familiar 
with the theory of turbulence, such a behaviour is not at all surprising. Indeed, 
it is welcome as a concrete example of one of the fundamental characteristics of 
turbulent flow-i.e. that the flow field has an intermittent spotty structure. How- 
ever, it is clear that the mathematical analysis leading to such a conclusion must 
be very complicated. In  trying to clarify this situation as much as possible (and 
for other reasons), several attempts have been made to develop the theory of 
uniformly valid asymptotic solutions (see Langer 1940). Indeed, the old conclu- 
sions are found to be justified. 

Recently, Case (1960, 1961) investigated the stability of parallel flows with 
respect to infinitesimal disturbances by considering the initial value problem. 
It is, of course, to be expected that there should be complete equivalence (cf. $2) 
between this approach and the theory based on normal modes. Yet Case found 
that there were apparent inconsistencies, especially in connexion with the above- 
mentioned problem of the asymptotic limit as the Reynolds number becomes 
infinite. These apparent discrepancies disappear upon closer inspection. How- 
ever, since they concern the fundamentals of the theories of stability and turbu- 
lence, and the problem is of general interest in the theory of singular perturba- 
tions of boundary-value problems of partial differential equations, it seems worth 
while to discuss the relationship between the two approaches in some detail so 
as to gain a deeper understanding of the issues. This is the purpose of the present 
note. The relative merits of the two approaches will be discussed in the concluding 
section of this paper. 
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It might be noted in passing, since the issue has been raised by Case (1961), 
that there is as yet no experimental evidence to suggest that the Navier-Stokes 
equations are inadequate to describe the phenomena of turbulent motion under 
ordinary conditions. For rarefied gases, the molecular structure should be con- 
sidered once the Kolmogoroff scale of turbulence becomes comparable with the 
scales of molecular phenomena, e.g. the mean free path. 

2. Some fundamental issues 
We shall first formulate some of the fundamental questions that may be raised 

about the normal-mode theory of hydrodynamic stability, as a result of the con- 
clusions reached by Case from the initial value theory. We consider the stability 
of a parallel flow?, for example, the pressure flow in a channel between parallel 
plates placed at y = 5 1. The flow is in the x-direction with a velocity distribu- 
tion U(y) = 1 - y2 (or some other parabolic function). The equation for small 
disturbances is 

where gl is the disturbance vorticity, related to the disturbance stream function 

and the velocity components are given by 

The constant v is the kinematic viscosity coefficient, or the inverse of the Rey- 
nolds number R in the present dimensionless formulation. The boundary con- 
ditions are u l = v l = O  at y =  k l .  

The solution of (2.1) can be treated either in terms of the theory of normal 
modes or by the initial value approach. In  the first approach, we superpose 
particular solutions of the form 

$'(x,y,t) = Re{$(y)eia(z-ct)}7 (2.5) 

(2.6) 

(2.7) 

where $( y) satisfies the familiar Om-Sommerfeld equation 

p - 2a24" + a4$ = i(a/v) [( u - c) ($I -a") - U"$], 
which is to be solved with the boundary conditions 

$( f 1) = $'( _+ 1) = 0. 

In  the initial value approach used by Case, we consider the Laplace transform 
of $'(x, y, t )  with respect to t and its Fourier transform with respect to x (a real, 
Re@) > 0): - II.' (y;a,p) = / / $ l ( x 7  y, t) e-iazdxe-prdt. (2.8) 

f Since Case did not formulate his theory in terms of the stream function, we develop 
below such a formulation in some detail to facilitate comparison with the normal-mode 
theory. 
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After solving for $'(y; a,p) in terms of the initial conditions and the boundary 
conditions, we calculate $'(x, y, t) by the inverse transform 

@(x, y,t) = //$'(y,a,p) e--iaxdaeptdp, (2.9) 

where the integration with respect to p is taken along the line Re(p) = p, > 0 
in the direction of increasing Im(p). The normal mode representation is obtained 
by evaluating the p-integral at  the singularities of $' in the p-plane by the 
theory of residues. 

Apparent differences arise when one considers the inviscid problem, which 
is obtained by formally putting v = 0 in the above formulation and dropping the 
boundary condition u' = 0 in (2.4). For this case, Case has shown, by the con- 
sideration of the initial value problem, that normal modes associated with certain 
continuous spectra? of eigenvalues must be included. The eigenfunctions found 
are continuous functions with discontinuous first derivatives. 

Case has further shown that for a set of initial conditions independent of the 
Reynolds' number, the solution of the viscous problem, in the limit v -+ 0, ap- 
proaches the solution of the inviscid problem except for a boundary-layer correc- 
tion near the walls. 

It might be tempting to suggest, as was done at one time, that the above 
conclusions combined would contradict the existence of the type of solutions 
described by this writer, as quoted in 3 1. However, since the type of solutions 
considered, being of the type Re{$(y, v) eia(x-d)}, is dependent on v a t  all times, it  is 
clear that they fall outside the scope of Case's theorem, because of his restriction 
on the initial conditions. There is therefore no contradiction. (In this connexion, 
it should be emphasized that the existence of the type of solution under discus- 
sion was established on mathematical grounds and supplemented by physical 
arguments-no t the reverse. ) 

However, other questions may be raised about the theory of normal modes. 
For example, since the inviscid problem has normal modes associated with 
a continuous spectrum, and the solution of the viscous problem in general 
approaches the inviscid solutions as v +  0, one may naturally pose the 
following question: 

(1) are there continuous spectra of eigenvalues for the Orr-Sommerfeld 
equation? 
We shall show in 94 that the answer is negative. This answer leads to the next 
question: 

(2) what is the viscous solution that corresponds to an inviscid normal mode, 
especially the one associated with the continuous spectrum ? 
We may also pose this question in terms of an initial value problem. Suppose we 
start with a set of initial conditions corresponding to an inviscid normal mode 
$;(x, y, t )  = Re{$,(y) eia(x-ct)), i.e. suppose we require 

$'(x, Y, 0 )  = 4oJ.(! / )  cos - sin ax, 
t The importance of studying the continuous spectra was pointed out earlier by 

Friedrichs (1941), but he did not give any detailed analysis. 
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and we consider the solution of (2.1) both in the inviscid case and in the viscous 
case. In  the inviscid case, we naturally get the solution &(x, y, t )  back. In  the 
viscous case, the solution should also be close to @h(x, y, t ) ,  according to Case. 
If there exists a normal mode 

@&@, y ,  t )  = Re{$&, v) cia($-@) 
that approaches the normal mode @h(x, y ,  t ) ,  the natural answer to the initial 
value problem is then f(z, y ,  t )  = $&(x, y ,  t )  +small correction terms. But 
suppose such a normal mode does not exist,? what is the nature of the solution? 
The logical conjecture is also at hand; namely, the solutions should be represented 
as an infinite sum of normal modes (as any solution can be so represented), 
the sum being not dominated by a single mode. But is this logical answer also 
plausible ‘1 

In  the following section, we shall show that this answer is indeed plausible 
by considering some simple examples where the solutions are explicitly known. 
These examples will also show the various ways in which the eigenfunctions of 
the viscous problem can behave in the limit of vanishing viscosity. In  particular, 
we shall see that the limiting eigenfunctions may still form a discrete set while 
the inviscid problem has a continuous set of eigenfunctions. It is also possible 
for the inviscid problem to have eigenfunctions, while the limit of every viscous 
eigenfunction does not exist. 

3. Examples of singular perturbation 
In  this section we shall examine the limiting behaviour of the solution of 

certain well-known parabolic equations as the ‘diffusion coefficient ’ approaches 
zero. These properties are essentially well known; here they are presented in such 
a manner as to bring out the points of greatest interest to the issues at hand. 

Example I .  Consider the diffusion equation (which is applicable to the un- 
steady parallel flow between two parallel plates) 

with the boundary conditions u(0) = u( 1) = 0. The ‘inviscid’ problem is simply 
au 
at 
2 = 0  

with no boundary conditions required. The normal modes (solutions obtained by 
the method of separation of variables) in the viscous case are 

u,(y, t ,  v) = sinn7rye-n2n2vi, (3.3) 
where n must take on the discrete set of values 1,2,3,  . . .. For the inviscid equa- 
tion (3.2), any continuous function f ( y )  is a normal mode. 

t This occurs not only in the case of continuous spectra of eigenvalues but also in the 
cme when the inviscid problem has an unstable mode. The complex conjugate operation 
yields a damped inviscid solution 

which has no counterpart among the normal modes of this viscous problem. 
$’(z,y, t )  = Re {#:(y) ei(z-c’t) } 

28 Fluid Mech. 10 
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In  the limit v -+ 0, the normal modes (3.3) become 

u,(y,t,O) = sinnmy (n = 1,2,3, ...). (3.4) 

This is but one discrete set of normal modes of the continuous set f(y) of the 
normal modes of (3.2). Thus, the existence of a continuous set of eigenvalues and 
eigenfunctions in the inviscid case does not necessarily imply the existence of a 
corresponding set in the viscous case, even in the inviscid limit. 

Consider now the initial value problem, with 

4 Y ,  0) = P(Y). (3.5) 

UdY, t )  = P(Y/). (3.6) 

Clearly, the inviscid solution is simply 

The viscous solution is in general given by the series 
00 

~ ( y ,  t )  = A ,  sin nnye-ma"a"t, 
n= 1 

0 P U  

where A,  is given by A,  = 

Clearly, as v -+ 0, the viscous solution (3.7) approaches the inviscid solution (3.6) 
for all finite t .  This is the gist of the theorem proved by Case for the hydrody- 
namical problem. On the other hand, if the initial condition (3.5) should contain 
v, e.g. if the condition were u(y,  0) = sin (y/v), such a correspondence would not 
exist. 

We note in passing that the limiting processes v -+ 0 and t -+ 00 are not inter- 
changeable for the solution (3.7), exactly as Case (1961) noted in his treatment of 
the hydrodynamical problem. 

The solution (3.7) shows clearly that all the normal modes are in general excited 
in an initial value problem in the viscous case, even though the solution in the 
inviscid case is just a single mode. [The initial condition u(y ,  0) = 6(y - y,) yields 
the set of coefficients A ,  = sin nnyc, which remain finite even as n -+ co. In  this 
case, a clear description of the solution for small t is the spread of a singularity, 
and not conveniently given by the method of normal modes. Our understanding 
can also be improved by examining the limiting process v -+ 0 in the Laplace 
integral representation of the solution (see Appendix).] 

Exceptional cases occur when the initial conditions correspond to the inviscid 
limit of a single viscous normal mode, sinnny (or a finite sum of such terms). 
In this case, only that particular mode is excited. This example thus gives 
plausibility to the answers given at the end of the last section. 

We note that the inviscid limit of the viscous normal modes happens to form 
a complete set of inviscid normal modes. In  the next example, we shall see that 
all the viscous normal modes do not even have inviscid limits. 

Example I I .  Consider now the equation 
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p ,  = --- k2 vn++. 
4v 

The inviscid problem has the normal modes 
u = eaue-kat. 

(3.10) 

(3.11) 

(3.12) 

For the initial condition cay, the viscous problem has a solution of the form 
m 

1 
u(y7 t ,  Y) = C A,(v) Wn(Y ,  V) epn(v)t7 

where the dependence of A,, w, and pn on v is specifically noted. It is obviously 
a complicated problem if one tries to calculate the limit of u(y ,  t ,  v) as v +. 0 
from the above series, since each individual eigenfunction wn(y, Y )  does not have a 
limit as v -+ 0. 

4. Continuous and discrete characteristic values 
The examples examined in the last section serve to illustrate the type of 

behaviour that may occur in the asymptotic limit of the solution of a partial 
differential equation of the second order. Since the hydrodynamical problem 
involves an equation of the fourth order, it is not surprising that the behaviour 
of the solution could be even more complicated. (See $ 5  for the description of 
some important normal modes.) With this general background, let us return to 
the characteristic value problem (2.6), (2.7), and consider the question of a 
continuous spectrum of characteristic values. 

Since the equation (2.6) is regular in the independent variable y as well as in 
the parameters R, a, c, there exists a fundamental system of four solutions which 
are analytic in y and the parameters R, a,  c. Indeed they are entire functions. 
Furthermore since the boundary conditions (2.7) are to be satisfied for finite 
values of y, the secular equation for the determination of eigenvalues 

F(R ,a , c )  = 0 (4.1) 

is an entire function of the three parameters R, a,  c, regarded as complex 
variables. If now there were a continuous set of eigenvalues for c, with R, a 
given, the equation (4.1) must reduce to an identity, by the theory of analytic 
continuation. Thus, the eigenvalues of the problem defined by (2.6) and (2.7) must 
all be discrete. 

The above is merely an elementary proof, for our special case, of a, general 
theorem for regular operators. The conclusion is thus obvious once it is pointed 
out. 

Continuous spectra are expected for the inviscid equation, 

(u-c)(g5,"-a2g5,)-ug50 = 0, ( 4 4  

(4.3) 

(at least for the case U = 2 + 0) ,  with the boundary conditions 

g50( k 1) = 0, 
28-2 
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because the operator is now singular. Let us try to see this fact more directly in 
terms of the solutions of equation (4.2). This equation is well known to have solu- 

where 1 + ... denotes a regular power series in (y- y,), and U(yJ = c. In  the 
case of real eigenvalues c, the real and imaginary parts of &( y) are separately solu- 
tions of (4.2). The real part is the continuous function 

(4.6) 
U: 

M Y )  = 1 +  1 . .  +- 4l(Y)log IY-Ycl, Uz. 
and the imaginary part is another continuous function 

We have thus three linearly independent solutions (4.4), (4.6) and (4.7) by per- 
mitting the solutions to have discontinuous or singular derivatives. With three 
linearly independent solutions for (4.2) and two boundary conditions (4.3), it  is 
obvious that the characteristic values have a continuous spectrum. 

However, if one regards the inviscid solution as the limit of the viscous solu- 
tion as v -+ 0, only the linear combination &.(y) +i$Jy)  is a solution, not 
q52r(y) and &&) separately. Continuous spectra are therefore not obtained. The 
point is that the inviscid limit does exist in a properly defined region,? and remains 
an anaZytic function of the complex variable y. (This region, however, does not 
necessarily include the complete physical region.) Thus, the solution for y > ye, 
when continued to the range y < yc must represent the same analytic function. 
The functions $,(y) and q5&) do not satisfy this requirement. 

5. Concluding remarks 
Let us now summarize our conclusions and compare the relative merits of the 

methods of normal modes and initial values. 
(i) Mathematically speaking, it should first be borne in mind that the Laplace 

integral representation of the solution can be decomposed into an infinite series 
of normal modes by the method of residues, and that the two approaches are 
essentially equivalent (see (vi) below). 

(ii) Secondly, a great deal of apparent contradictions can be avoided if the 
following facts are kept in mind. A normal mode in the inviscid theory may not 
be the limit of a normal mode in the viscous theory. Conversely, a normal mode 
in the viscous theory may not have an inviscid limit. These conclusions are based 
on mathematical investigations of the solutions of the Om-Sommerfeld equation. 
They are illustrated by simple examples in 5 3. The calculations in the Appendix 

i { i ( U -  c)} dy = 0, chosen in such t This region is defined by two of the three lines Re 

a manner as to include the two end points of our boundary-value problem. See Lin 
(1955, figure 8.1, p. 130). 
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illustrate fully the lack of direct correspondence between the inviscid eigen- 
functions and the inviscid limit of the viscous ones. 

(iii) If we are dealing with disturbances where the viscous effects are restricted 
to a boundary-layer region of the order of (aR)-inear the solid surface, theinitial 
value approach leads to the familiar boundary-layer theory; i.e. the solution is 
composed of an inviscid solution plus a boundary-layer correction. In this 
method of description, the normal modes belonging to the continuous spectrum 
(or spectra), which occur in the inviscid case, must be used. This description is 
simpler than in terms of the normal modes in the viscous theory (which are 
discrete). The type of simplification is similar to that occurring with the examples 

(iv) However, there are important types of disturbances not of the type de- 
scribed above, In  particular, the unstable disturbances responsible for the 
initiation of turbulence in the channel or the boundary layer are of a different type. 
These disturbances extend over a layer of the order of (aR)-f, which is thicker 
than the layer in the previous case. For these disturbances, the viscous forces 
have a well-known destabilizing influence typical of the instability of shear flows. 

(v) There are also exponentially damped normal modes which have the inter- 
mittent spotty structure characteristic of turbulence. There are also normal 
modes which have no inviscid limit anywhere in the physical region. When, to 
attempt a description of the transition process, the non-linear theory is considered 
these normal modes are expected to play an important role. 

(vi) The initial value theory has not yet been developed to study the two types 
of disturbances just mentioned. It would be interesting to carry out these 
investigations to see whether different features can be revealed by the Laplace 
integral representation. In  particular, it should be possible to bring out the de- 
stabilizing influence of the viscous forces mentioned in (iv). It would appear, 
from the fact that there are only a finite number of unstable modes, that the two 
methods would yield essentially the same results with regard to the unstable 
behaviour of the flow. On the other hand, it is likely that one would find only 
stable disturbances for the flow through a channel, if the viscous forces are re- 
stricted to boundary-layer regions which have a thickness of the order of (aR)-i 
(cf.Lin & Rabenstein 1960). 

of $3. 
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Appendix A 
To get a closer comparison with Case’s investigation (1961) of the hydrody- 

namical problem, let us explicitly use the method of the Laplace transformation 
(for the equation (3.1)). The solution is then given by 

(A 1) 
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where U(y, p) satisfies the differential equation 

and the contour C is the line Re(p) = po > 0, taken in the direction of increasing 
Im(p). For the purposes in hand, we need only consider the simple case 
a(y ,  0 )  = const. We then have 

{sinh qy + sinh q( 1 - y )  - sinh q}. - 1 u = -  
p sinh q 

We make two observations. 
(i) If we deform the contour C so as to evaluate the integral (A 1) in terms of 

the residues at the poles of (A 3), p = - vn2nz(n = 1,2,  . . .), we recover the series 
solution (3.7) in terms of the eigenfunctions. Notice that U does not have a 
singularity at p = 0. 

(ii) In  the limit v + 0,  the singularities of (A 3) become dense along the whole 
negative part of the real axis in the p-plane, but the limiting function is 

1 
lim;il= -- for 0 < y < 1. 
v+o P (A 4) 

This limiting form (A 4) agrees with the inviscid transform 

- 1 - _ -  
O -  P’ 

but its singularity lies at p = 0, and does not coincide with any one of the singu- 
larities of (A 3) for v > 0. 
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